Installing PyTorch with CUDA via PowerShell
Check your NVIDIA drivers and CUDA toolkit
Uninstall the CPU version of PyTorch (assuming that your PyTorch is currently based on CPU version)
Install PyTorch with CUDA 11.6 using PowerShell
Step 1: Check NVIDIA Drivers & CUDA Toolkit
Open PowerShell:
- Press
Win + X
and select Windows PowerShell.
- Press
Run NVIDIA SMI Command:
nvidia-smi
Example Output:
PS C:\Windows\System32> nvidia-smi Sun Mar 9 12:29:36 2025 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 511.65 Driver Version: 511.65 CUDA Version: 11.6 | |-------------------------------+----------------------+----------------------+ | GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... WDDM | 00000000:01:00.0 Off | N/A | | N/A 57C P0 10W / N/A | 0MiB / 4096MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | No running processes found | +-----------------------------------------------------------------------------+
Step 2: Uninstall the CPU Version
pip uninstall torch -y
Step 3: Install PyTorch with CUDA 11.6
pip install torch --index-url https://download.pytorch.org/whl/cu116
Step 4: Test
If you plan to run via virtual environment, activate the environment first.
And then run the code one after another:
python -c "import torch; print(torch.__version__)"
python -c "import torch; print(torch.cuda.is_available())"
python -c "import torch; print(torch.version.cuda)"
python -c "import torch; print(torch.cuda.get_device_name(0))"
Example:
(myenv) PS C:\ZML> python -c "import torch; print(torch.__version__)"
1.13.1+cu116
(myenv) PS C:\ZML> python -c "import torch; print(torch.cuda.is_available())"
True
(myenv) PS C:\ZML>
(myenv) PS C:\ZML> python -c "import torch; print(torch.version.cuda)"
11.6
(myenv) PS C:\ZML> python -c "import torch; print(torch.cuda.get_device_name(0))"
NVIDIA GeForce RTX 3050 Ti Laptop GPU
You can also run the code in Visual Code (but you need to install ipykernel first)
NOTE:
When installing or upgrading PyTorch with CUDA, there are a few libraries you might want to consider uninstalling and reinstalling to avoid compatibility issues. Here are some libraries to check:
1. NumPy
Ensure you have a compatible version of NumPy.
You can uninstall and reinstall it: bashCopy
pip uninstall numpy -y pip install numpy
2. Pandas
Similar to NumPy, check for compatibility and reinstall if necessary:
pip uninstall pandas -y pip install pandas
3. Torchvision
If you use Torchvision, make sure it matches your PyTorch version:
pip uninstall torchvision -y pip install torchvision --extra-index-url https://download.pytorch.org/whl/cu116
4. Torchaudio
If you use Torchaudio, ensure it is compatible:
pip uninstall torchaudio -y pip install torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
5. Other Related Libraries
- Libraries like
torchtext
,torchmetrics
, or any other libraries that rely on PyTorch should also be checked for compatibility.
For recent versions of PyTorch (1.10 and later), NumPy versions 1.19.2 or higher are usually compatible.
If your NumPy version is different, uninstall it first:
pip uninstall numpy -y
Reinstall
pip install numpy==1.24.4
For recent versions of PyTorch (1.10 and later), Pandas versions 1.1.0 or higher are typically compatible.
If your Pandas version is different, uninstall it first:
pip uninstall pandas -y
:pip uninstall numpy -y
Reinstall
pip install pandas==1.5.3
.